**Mathematical Definition**

**Input Domain**

The input range of the func is: x1∈ [-1.5, 4], x2∈ [-3, 4].

**Global Minima**

The func has one global min f(x*)=-1.9133, at x* = (0.54719,-1.54719)

**Characteristics**

The function is continuous.

The function is convex.

The function is defined on 2-D space.

The function is multimodal.

The function is differentiable.

**Python Implementation**

*% Please forward any comments or bug reports in chat**
**Copyright 2021. INDUSMIC PRIVATE LIMITED.THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY FOR THE USE OF THIS PROGRAM. If software is modified to produce derivative works, such modified software should be clearly marked. Additionally, user can redistribute it and/or modify it under the terms of the GNU General Public License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. See the GNU General Public License for more details.**
**% for any support connect with us on help.indusmic@gmail.com**
# Author: Dhanishtha Sharma*
**import** sympy
**import** math
**from** sympy **import** symbols
**from** sympy **import** *****
**from** sympy.plotting **import** plot3d
**import** numpy **as** np
**import** matplotlib **as** mpl
**import** matplotlib.pyplot **as** plt
**from** mpl_toolkits.mplot3d **import** Axes3D
**%matplotlib** notebook
plt**.**rcParams['figure.figsize'] **=** (6,4)
plt**.**rcParams['figure.dpi']**=**150
fig**=**plt**.**figure()
ax**=**fig**.**add_subplot(111,projection**=**'3d')
x1,x2**=**symbols('x1 x2')
plot3d((sin(x1**+**x2)**+**(x1**-**x2)******2**-**1.5*****x1**+**2.5*****x2**+**1),(x1,**-**1.5,4,2),(x2,**-**3,4,2))

**References:**

[1] Jamil, Momin, and Xin-She Yang. "A literature survey of benchmark functions for global optimization problems." *International Journal of Mathematical Modelling and Numerical Optimization* 4.2 (2013): 150-194.

## Comentarios