Search

# Python Implementation of ADJIMAN FUNCTION

Updated: Jul 14, 2021

**Mathematical Definition**

**Input Domain**

The function is defined on input domain i.e. x ∈ [−1, 2] and y ∈ [−1, 1].

**Global Minima**

The global minimum f(z) = −2.02181 is located at z = (0, 0).

**Characteristics**

The function is not convex.

The function is differentiable.

The function is non-separable.

The function is defined on 2-dimensional space.

**Python Implementation**

*%** Please forward any comments or bug reports **in** chat*
*Copyright **2021.** **INDUSMIC** **PRIVATE** **LIMITED**.**THERE** **IS** **NO** **WARRANTY**,** **EXPRESS** **OR** **IMPLIED**.** **WE** **DO** **NOT** **ASSUME** **ANY** **LIABILITY** **FOR** **THE** **USE** **OF** **THIS** **PROGRAM**.** If software is modified to produce derivative works**,** such modified software should be clearly marked**.** Additionally**,** user can redistribute it and**/**or modify it under the terms **of** the **GNU** General Public License**.** This program is distributed **in** the hope that it will be useful**,** but **WITHOUT** **ANY** **WARRANTY**.** See the **GNU** General Public License **for** more details**.*
*%** **for** any support connect **with** us on help**.**indusmic@gmail**.**com*
**%**** ****Author****:**** **Yamini Jain
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
def f(x,y):
return (np.cos(x)*np.sin(y) - (x/(y**2+1)))
X = np.linspace(-1,2)
Y = np.linspace(-1,1)
x,y = np.meshgrid(X,Y) #creating a rough mesh for generation of graph
F = f(x,y)
fig = plt.figure(figsize=(9,9))
ax = plt.axes(projection='3d')
ax.contour3D(x,y, F,450, cmap = cm.cubehelix_r)
ax.set_title('Adijman Function') #Giving a title to the image
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('F')
ax.set_xlim(2,-1)
ax.set_ylim(1,-1)
ax.set_zlim(-3,2)
ax.view_init(21,45) #This can be altered according to the need
plt.show()

**References:**

[1] Jamil, Momin, and Xin-She Yang. "A literature survey of benchmark functions for global optimization problems." *International Journal of Mathematical Modelling and Numerical Optimization* 4.2 (2013): 150-194.